Peri-operative diagnosis and treatment of platelet disorders

Introduction

The important role of platelets in the physiology and pathophysiology of haemostasis was acknowledged after the introduction of the cell-based model of coagulation. Hyperactive platelets may contribute to stent thrombosis or disseminated microembolism, leading to organ dysfunction. Platelet inhibition may provoke peri-operative bleeding, independent of platelet counts. Taken together, on-site diagnosis of actual platelet reactivity may permit rapid and goal-directed therapeutic interventions in patients at risk. There is still no consensus on the appropriate method for measuring platelet function. In this refresher course lecture Platelet Funktion Analyzer PFA-100 and Multiple Electrode Aggregometry MEA will be discussed among other tests for the perioperative use.

Methodology

In the Platelet Funktion Analyzer PFA-100, 800 µl of citrated whole blood is added to a reservoir well in a disposable cartridge. The instrument aspirates the blood sample under high shear rates and constant vacuum through a capillary and the microscopic aperture within a membrane coated with platelet agonists, collagen and either epinephrine or adenosine diphosphate (ADP). This leads to the attachment, activation and aggregation of platelets, forming a plug. The time taken to occlude the aperture is known as closure time (CT): the shorter the CT, the better the platelet function. Maximum test duration is 300 s. Normal values: < 165 s epinephrine test, < 186 s ADP test.

Platelet Function Analyzer PFA-100

This method rapidly identifies aspirin effects and platelet disorders prior to surgery. Therefore, the PFA-100 has gained acceptance for identification of Von Willebrand syndrome.

In patients with prolonged CT and without contra-indications against desmopressin, shortening of the CT after desmopressin infusion (0.3 µg/kg infusion over 30 mins) should be assessed (“desmopressin response test”). In cardiac surgical patients, the pre-operative PFA-100 CT correlated with postoperative blood loss in some studies, but not in others. Major limitations of the PFA-100 as an intra-operative point-of-care system in massive transfusion include its strong dependence on platelet count (> 100 G/l), hematocrit (> 30%) and Von Willebrand factor. The diagnostic gap for clopidogrel limits drug-monitoring in patients under dual anti-platelet therapy.

Platelet aggregometry

Platelet aggregometry assesses platelet reactivity by measuring changes in luminescence or impedance between two electrodes upon platelet agonist stimulation. In Multiple Electrode Aggregometry MEA (Multiplate, Dynabyte); hirudinised whole blood (300 µl) is added to a reservoir well in a disposable cartridge with a magnet. After addition of agonists at standardised concentrations using an automated pipetting system (collagen, arachidonic acid, ADP, thrombin receptor activator peptide TRAP, ristocetin), the electrical current between the two electrodes changes according to platelet adhesion and aggregation. Conventional test duration is 6 mins. Maximum aggregation, aggregation velocity and area under the aggregation curve are test parameters.

Widespread adoption of anti-platelet agents into everyday clinical practice has revolutionised contemporary care of cardiovascular patients. There is a high rate of non- or low-responders to dual anti-platelet therapy (5 - 30%); these individuals are not sufficiently protected against ischaemic events. MEA is sensitive for aspirin effects and clopidogrel. Clopidogrel low-responders in MEA had a 10-fold increased risk for stent thrombosis (2,2% vs. 0,2% compared to responders) and a 3-fold increased 30-day mortality (1,2% vs. 0,4%). Aggregation ≥ 42 U in ADP test was identified as the cut-off for low-response.

MEA could provide differential diagnostic information in acute bleeding especially after extracorporeal circulation of cardiopulmonary bypass and predict blood loss. At platelet counts < 100 G/l only qualitative analysis is possible.

Other test options

Other test options have been summarised previously. Optical aggregometry (Born) has only been performed in specialised laboratories by experienced technicians. The need for time-
Refresher Course: Peri-operative diagnosis and treatment of platelet disorders

The pre-operative assessment of the bleeding history of the patient and of his/her relatives remains the most important tool for detection of both mild and severe inherited or acquired bleeding disorders which may increase the risks of peri-operative bleeding. Standardised questionnaires have been designed in order to assess the type of bleeding (mucosal versus non-mucosal) and the timing of bleeding (immediate versus delayed, since early childhood versus late in life) among other parameters, such as use of anti-coagulant or anti-platelet drugs. The platelet function tests described above are first level tests in the pre-operative evaluation of patients with platelet concentrates (Von Willebrand factor/factor VIII: fibrinogen, recombinant factor VIIa). Of Official prescribing information and national approval status need to be acknowledged.

Conflicts of interest statement
The author received honoraria for lecturing and funding for the academic, non-profit educational e-learning platform www.perioperativebleeding.org from companies involved in perioperative coagulation monitoring (Dynabyte, Pentapharm).

References
28. www.perioperativebleeding.org